This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Are your tank wagons at risk of electrostatics?

Author : Alexander Zelck, TIMM

01 July 2021

Large amounts of liquids can be transported over long distances in an eco-friendlier way in railway tank wagons compared to road tankers. In the oil and gas industry, this transport mode is typically established between oil ports, refineries, storage depots, distribution depots and industrial consumers with railway siding. Block trains are used to transport very large amounts of liquid while individual tank wagons are used for smaller quantities.

(Click here to view article in digital edition)

Loading and unloading tank wagons can take place at terminals of different scales. Applied loading technologies are, for instance, mobile transloading systems, top loading platforms with hoses or drop pipes, on spot loading facilities with one or more loading spots, or series loading gantries with one or multiple tracks. Unloading usually takes place from the bottom of the wagon through connected hoses or arms. In terms of automation, the terminal may range from manual operation up to being a facility with remote-controlled shunting and automatically positioned filling lances. Top loading dome cones can house a high-level sensor to prevent against overfilling and a vapour return line. Quantity pre-set, flow control, metering/weighting and DCS visualisation are common at highly frequented terminals.

Presence of a flammable atmosphere

When handling tank wagons with crude oil, fuels, petrochemicals or chemicals at rail terminals, the presence of an explosive atmosphere is highly likely. The flammable atmosphere is formed by the evaporation of flammable gases from the transported liquid:

-  The evaporation happens inside the tank.

-  When opening the dome hatch or loading couplers, the flammable vapours escape.

-  Vapours are heavier than air, spread on the ground, through cavities and form explosive mixtures with air.

-  Vapours can spread over great distances and be present even in remote places.

Railway top loading gantry
Railway top loading gantry

Liquid flashpoint determines evaporation

The specified flashpoint of the liquid provides an indication of the liquid surface temperature when evaporation starts. Uncertainties to this indication may result from the actual temperature inside the tank, air concentration or liquid mixture [IEC TS 60079-32-1:2013, Section 7.1.1]:

-  In areas of high ambient temperature and strong sunlight, flammable atmospheres may even occur from liquids that have flash points above 60°C.

-  The concentration of the flammable vapours in air determines if a mixture is flammable or not. When handling a liquid at a temperature well above its flash point, the saturated vapours may result in a non-flammable atmosphere. But in practice, the actual atmosphere above the liquid may not be saturated (e.g. because of ventilation) and so may be flammable.

-  Residues of volatile liquid or vapour from earlier operations with the same equipment or from nearby operations can contribute to a flammable atmosphere. Residual vapours may occur during switch loading, when a liquid having a high flash point (e.g. diesel) is loaded into a tank which previously contained a liquid with a low flash point (e.g. gasoline).

Last but not least, future liquid specifications should be taken into consideration. For instance, in the field of bio fuels, mixtures may change the evaporation behaviour.

If it cannot be ruled out with certainty that a flammable atmosphere may be present, rail tank wagon loading or unloading facilities should be classified as hazardous areas. This avoids potential risk from existing ignition sources, such as electrical equipment being installed and used.

Electrostatic charge accumulation and dissipation

A source of energy capable of igniting an explosive atmosphere is provided by electrostatic charges. Liquids can become electrostatically charged when they move through pipes and hoses. Mixing, spraying or splashing can also create highly charged liquids or mists. The generated charges can accumulate at the liquid or on isolated equipment and surfaces. An uncontrolled discharge of static electricity can provide enough energy to ignite the mixture.

To avoid sparks, a dissipative connection of every piece of plant equipment and the tank wagon itself to earth must be established. Arising charges by loading or unloading processes then can be safely diverted to earth potential.

Electrostatics are a physical phenomenon characterised by very high electrical voltages, up to 20,000V, and very low electrical grounding currents at the same time. Accordingly, a resistance of 1 MOhm is considered sufficient in international standards to safely dissipate the electrostatic charges [IEC TS 60079-32-1:2013, Chapter 7.3.2.3.4].

In contrast, there are publications which discuss considerably lower dissipation resistances, e.g. 10 Ohm [based on suggestions in IEC 60079-32-1:2013; for instance Chapter 13.2.2, table 22]. These values ??do not result from the physics of discharging electrostatics. Rather, they are an expression of the practicability to verify the presence of the grounding connection. The reason is very simple: Low resistance values ??can be measured by using simple measuring equipment. Existing damages or interruptions of the grounding connection can be identified easily, for instance, by using a multimeter.

Check resistance before every loading operation?

This question almost answers itself. And this is where ground indication monitors come into play. These so-called Grounding Control Devices are protective pieces of equipment to set up and to verify a grounding connection to avoid the accumulation of electrostatic charges at the railway wagon. Furthermore, they reduce the time required for manual checks of grounding lines and dissipation paths.

When using Grounding Control Devices capable of impedance measuring, the limit value of 10 Ohm should not be applied. It unnecessarily affects the reliability of the grounding detection. In extreme cases, wagons may not be allowed to load and still intact grounding cables and clamps may have to be replaced prematurely, although the present grounding connection is more than adequate.

Are tank wagons sufficiently grounded by rails or drop pipes?

Some argue that wagons standing on rails are already sufficiently grounded. The question is, what could interrupt the grounding path provided by the tracks? Interruptions or high electrical resistances in the dissipation path from the tank body to the wagon’s chassis and further to the tracks may result for instance from coatings, rust, grease layers, noise reduction measures or vibration damper. From the terminal’s point of view, all of these influencing factors are beyond its control.

The argument is similar for grounding via the inserted drop pipe in on-spot loading facilities. The relevant rules require that the drop pipe touches the bottom of the tank. This can also be used to make a grounding connection. But this alone is not a sufficient proof of established grounding. And it remains the question, if a drop-pipe should be inserted before a grounding connection is given. Thus, presence and actual evidence of low resistive electrical contact should also be provided at drop pipe loading facilities. For instance, by manually to connect or integrated grounding measuring circuits.

Model of electrical measuring loop to verify grounding connection
Model of electrical measuring loop to verify grounding connection

Grounding control technologies

Grounding Control Devices verify that a grounding connection is present each time when a loading or unloading process takes place. In case of a lost grounding connection, they interrupt pump operation to avoid accumulation of static electricity. One thing all types of these devices have in common is that an intrinsically safe signal is used for resistance, capacitance or impedance measurement of the grounding loop and object to ground. Two measuring methods can be distinguished:

1. Contact measuring

This method verifies the contact resistance of the Grounding Clamp at the grounding pin of the tank wagon. Usually this refers to a two pole measuring where the measuring loop is built by two conductors inside the Grounding Cable. The first line transmits the measuring signal in direction to the Grounding Clamp. The second line will receive the measuring signal and provide the dissipation path to earth potential through the Grounding Control Device. The measuring loop is closed at the contact point at the tank car, but not through the tank body and rails. An isolated piece of metal could be misinterpreted by this measuring as a valid grounding contact point.

2. Impedance measuring loop through ground potential

This method refers to a single conductor measuring and grounding line to the tank wagon. Using the measuring signal, the resistance in the grounding cable, the contact resistance at the grounding pin, the resistance from the pin through the tank body and finally the impedance from tank body to and through ground potential can be verified. This gives evidence that the clamp is attached to a grounding pin, that is not isolated at the rail wagon, and that a dissipative grounding connection is provided by the tracks or through the Grounding Control Device.

Loading bridge with grounding control device
Loading bridge with grounding control device

Recommendation for highest level of safety

Based on the previous considerations, it is highly recommended to zone liquid loading/unloading areas at oil and gas rail terminals as Ex Zone 1 and to use electronic Grounding Control Devices to protect against dangers resulting from electrostatic charges. When deciding for a grounding control technology, attention should be paid to the incorporated measuring principle and further provided technical advantages. The decision should be based on the following checkpoints:

-  Continuous impedance ground loop measuring – instead of simple resistance measuring

-  Configurable limit values to adapt measuring to local requirements

-  Auto-diagnosis functions to make sure the equipment is always proper working

-  Failsafe control outputs to protect from signal transmission errors

-  User friendly explosion protection to ease installation and maintenance – without type of protection Ex d

-  SIL2 approved functional safety

Alexander Zelck, TIMM
Alexander Zelck, TIMM

Standards / Code of Practice on electrostatic grounding of rail tank wagons

IEC TS 60079-32-1:2013: Explosive atmospheres - Part 32-1: Electrostatic hazards, guidance. Published by The International Electrotechnical Commission (IEC).

TRGS 727: Technical rules for hazardous substances: Avoidance of ignition hazards due to electrostatic charges. Published by the Federal Ministry of Labor and Social Affairs, Germany.

NFPA 77: Recommended Practice on Static Electricity. Published by the National Fire Protection Association, USA.

API RP 2003: Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents. Published by the American Petroleum Institute, USA.

About the author:

Alexander Zelck is the Sales and Product Lead Gas-Ex at TIMM. He has a Degree in Engineering and Business Administration and a PhD in manufacturing plant engineering. Alexander has been working in different roles at TIMM for eight years. TIMM develops and manufactures electronic measuring and control equipment for tank farms, harbours, and industrial sites. Its devices are used mainly in the petrochemical industry to safeguard loading and unloading of inflammable liquids or bulk solids, or to control access to restricted areas.


Contact Details and Archive...

Print this page | E-mail this page